Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии»




Скачать 90.19 Kb.
НазваниеСпецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии»
Дата конвертации29.01.2013
Размер90.19 Kb.
ТипДокументы
Муниципальное Автономное Общеобразовательное Учреждение

«Гимназия №1» города Белгород

Спецкурс по химии на английском языке

в старших профильных классах

«Перевод текстов по химии»

подготовила

учитель английского языка

Федосова Елена Александровна

г. Белгород 2012

Спецкурс предназначен для учащихся старших профильных классов.

Курс рассчитан на одно занятие в неделю.

Для учащихся старших классов типично стремление к поиску, а этому поиску необходимо обучать. В старших классах любого профиля ученик встречает много спец. текстов. Данный спецкурс предназначен для учеников химико-биологического профиля. За основу спецкурса взяты различные тексты о периодической таблице и химических элементов. Подобные тексты ученики читают на русском языке. Иногда нужные тексты встречались только на английском языке. Мы поставили перед собой задачу составить определённую универсальную схему построения спец текста на английском языке. Схема помогла бы ученику составит рассказ о периодической таблице и любом химическом элементе. Теорию построения спец. текста мы взяли за основу спец.курса. В начале работы мы читали оригинальные тексты на английском языке, делали переводы, учитывая специфику текста, подбирали подобные тексты на русском языке. Таким образом основу спец.курса составили различные тексты. Мы выяснили, что совокупность тематических объединений в научных текстах на английском и русском языках одинаковы. Наша задача была составить список этих тем и метатем. По составленному списку можно описать любое химическое явление, элемент, соединение. Результатом работы считать тексты учащихся составленные по этому плану самостоятельно. Дети активно включились в работу. Расширялся поиск текстов, увеличивалось количество текстов. Шаг за шагом учащиеся учились текст не просто как источник информации, но и смотреть на текст как на единицу науки лексикологии, филологии, лингвистики и языковедения. А главное дети открывали для себя что-то новое не только в химии, но и в языке. А интерес к английскому языку в данном случае считаю главным. Мы использовали следующие виды работы:

  1. изучение текста

  2. составление характеристики текста

  3. составление списка тем и метатем

  4. сравнение этого списка

  5. сравнение структуры минимум трёх текстов.

Первые занятия необходимо познакомить учащихся с теорией текста и обращаться к ней на протяжении всего курса и с каждым текстом.

  1. Что такое текст

  2. Что такое специальный текст

  3. Параметры текста (тема, фокус, связь)

  4. Тема и метатема в специальном тексте

  5. Что такое тема и рема

  6. Характеристики текста

  7. Межфразовые связи

  8. Требования к специальному тексту

Задания к каждому тексту идентичны.

  • Найдите в тексте тему и рему

  • Сократите текст, оставив только тему

  • Найдите слова, которые соединяют абзацы или другие часть текста

  • Составьте план текста

  • Составить словарь к тексту

  • Выписать лексику по организации текста

Например, задания к тексту “Hydrogen”

Прочитайте текст несколько раз. При каждом прочтении следует давать конкретной задание по поиску ответа на конкретный вопрос.

  1. Переведите текст на русский язык

  2. Прочитайте текст и его перевод, отредактируйте перевод и внесите поправки

  3. Составьте словарик незнакомых слов и слов по теме химия, водород

  4. Составьте план-конспект текста

  5. Найдите основные параметры текста

  6. Дайте деление предложения на тему и рему

  7. Выделите в тексте требования к спецтексту

  8. Сделайте необходимые схемы, рисунки, таблицы

  9. Составьте список метатем

  10. Попробуйте составить своё описание водорода (краткое или развёрнутое)

  11. Дайте описание другого элемента

Заключительным этапом работы следует составить текст самостоятельно.

Работа с теорией и текстами требует индивидуальной, парной и фронтальной работы.

Количество текстов может меняться от уровня знаний учащихся химии и английского языка. Тексты можно использовать в рамках эксперимента проведения интегрированных уроков химия + английский язык. Учитель подбирает текст на английском и русском языках с похожим содержанием, на занятии дети делают перевод с английского и с русского языка, сравнивают тексты и составляют свой текст. На изучение каждого химического элемента отводится минимум 4 занятия.

На этом наша работа не закончилась. Мы разработали специальные курсы по математике, геометрии и физики для описания явлений характерных для этих предметов. Изучение этих спец.курсов помогли в последствии учащимся в составлении описания времён английского языка.

Примерный план занятий.

  1. четверть – Теория текста.

  2. четверть – Изучение таблицы Менделеева.

  3. четверть – Изучение элементов таблицы.

  4. четверть - Применение знаний в самостоятельной работе. Составление текстов.



Тема занятий



Изучение теории текста. Что такое текст. Что такое специальный текст. Их отличия и сходства.



Изучение теории текста. Параметры текста (тема, фокус, связь) Характеристики текста.



Изучение теории текста. Тема и метатема в специальном тексте. Что такое тема и рема.



Изучение теории текста. Межфразовые связи. Требования к специальному тексту



Список химических элементов. Правила чтения химических элементов на английском языке.



Основы, элементы и правила перевода текста с английского и на английский язык.



Основы, элементы и правила технического и специального перевода.



Обобщение и повторение. Составление и защита минипроекта по выбору ученика.



Дмитрий Менделеев. Биография и научные труды. Человек и учёный.



Периодическая система Менделеева.



Периодическая система Менделеева.



Периодическая система Менделеева



Периодическая система Менделеева



Химические элементы таблицы Менделеева. Общая картина. Газы, металлы, жидкости.



Химические элементы таблицы Менделеева. Соединения, реакции.



Обобщение и повторение.



Химические элементы таблицы Менделеева. Водород.



Химические элементы таблицы Менделеева.



Химические элементы таблицы Менделеева.



Химические элементы таблицы Менделеева.



Химические элементы таблицы Менделеева. Натрий.



Химические элементы таблицы Менделеева.



Химические элементы таблицы Менделеева.



Повторение и обобщение. Резервный урок.



Работа над проектом. Описание химического элемента по выбору.



Работа над проектом.



Работа над проектом.



Защита проекта.



Защита проекта.



Защита проекта.



Защита проекта.




Повторение и обобщение. Резервный урок.

Примерные тексты.

Dmitri Ivanovich Mendeleev

Dmitri Ivanovich Mendeleev was a Russian chemist and inventor. He is credited as being the creator of the first version of the periodic table of elements. Using the table, he predicted the properties of elements yet to be discovered.

Mendeleev was born in the village of Verkhnie Aremzyani, near Tobolsk in Siberia, to Ivan Pavlovich Mendeleev and Maria Dmitrievna Mendeleev (née Kornilieva). His grandfather was Pavel Maximovich Sokolov, a priest of the Russian Orthodox Church from the Tver region.

His father was a teacher of fine arts, politics and philosophy. Unfortunately for the family's financial well being, his father became blind and lost his teaching position. His mother was forced to work and she restarted her family's abandoned glass factory. At the age of 13, after the passing of his father and the destruction of his mother's factory by fire, Mendeleev attended the Gymnasium in Tobolsk.

In 1849, the now poor Mendeleev family relocated to Saint Petersburg, where he entered the Main Pedagogical Institute in 1850. After graduation, he contracted tuberculosis, causing him to move to the Crimean Peninsula on the northern coast of the Black Sea in 1855. While there he became a science master of the Simferopol gymnasium №1. He returned with fully restored health to Saint Petersburg in 1857.

Between 1859 and 1861, he worked on the capillarity of liquids and the workings of the spectroscope in Heidelberg. In late August 1861 he wrote his first book on the spectroscope. On 4 April 1862 he became engaged to Feozva Nikitichna Leshcheva, and they married on 27 April 1862 at Nikolaev Engineering Institute's church in Saint Petersburg (where he taught). Mendeleev became a professor at the Saint Petersburg Technological Institute and Saint Petersburg State University in 1864 and 1865, respectively. In 1865 he became Doctor of Science for his dissertation "On the Combinations of Water with Alcohol". He achieved tenure in 1867, and by 1871 had transformed Saint Petersburg into an internationally recognized center for chemistry research. In 1876, he became obsessed with Anna Ivanova Popova and began courting her; in 1881 he proposed to her and threatened suicide if she refused. His divorce from Leshcheva was finalized one month after he had married Popova in early 1882. Even after the divorce, Mendeleev was technically a bigamist; the Russian Orthodox Church required at least seven years before lawful re-marriage. His divorce and the surrounding controversy contributed to his failure to be admitted to the Russian Academy of Sciences (despite his international fame by that time). His daughter from his second marriage, Lyubov, became the wife of the famous Russian poet Alexander Blok. His other children were son Vladimir (a sailor, he took part in the notable Eastern journey of Nicholas II) and daughter Olga, from his first marriage to Feozva, and son Ivan and a pair of twins from Anna.

Though Mendeleev was widely honored by scientific organizations all over Europe, including the Copley Medal from the Royal Society of London, he resigned from Saint Petersburg University on 17 August 1890.

In 1893, he was appointed Director of the Bureau of Weights and Measures. It was in this role that he was directed to formulate new state standards for the production of vodka. As a result of his work, in 1894 new standards for vodka were introduced into Russian law and all vodka had to be produced at 40% alcohol by volume.

Mendeleev also investigated the composition of petroleum, and helped to found the first oil refinery in Russia. He recognized the importance of petroleum as a feedstock for petrochemicals. He is credited with a remark that burning petroleum as a fuel "would be akin to firing up a kitchen stove with bank notes."

In 1905, Mendeleev was elected a member of the Royal Swedish Academy of Sciences. The following year the Nobel Committee for Chemistry recommended to the Swedish Academy to award the Nobel Prize in Chemistry for 1906 to Mendeleev for his discovery of the periodic system. The Chemistry Section of the Swedish Academy supported this recommendation. The Academy was then supposed to approve the Committee choice as it has done in almost every case. Unexpectedly, at the full meeting of the Academy, a dissenting member of the Nobel Committee, Peter Klason, proposed the candidacy of Henri Moissan whom he favored. Svante Arrhenius, although not a member of the Nobel Committee for Chemistry, had a great deal of influence in the Academy and also pressed for the rejection of Mendeleev, arguing that the periodic system was too old to acknowledge its discovery in 1906. According to the contemporaries, Arrhenius was motivated by the grudge he held against Mendeleev for his critique of Arrhenius's dissociation theory. After heated arguments, the majority of the Academy voted for Moissan. The attempts to nominate Mendeleev in 1907 were again frustrated by the absolute opposition of Arrhenius.

In 1907, Mendeleev died at the age of 72 in Saint Petersburg from influenza. The crater Mendeleev on the Moon, as well as element number 101, the radioactive mendelevium, are named after him.

Periodic table

The periodic table is a tabular display of the chemical elements, organized on the basis of their atomic numbers and chemical properties. Elements are presented in increasing atomic number. The main body of the table is a 18 × 7 grid, and elements with the same number of valence electrons are kept together in groups, such as the halogens and the noble gases. Due to this, there are gaps that form four distinct rectangular areas or blocks. The f-block is not included in the main table, but rather is usually floated below, as an inline f-block would make the table impractically wide. Using periodic trends, the periodic table can help predict the properties of various elements and the relations between properties. As a result, it provides a useful framework for analyzing chemical behavior, and is widely used in chemistry and other sciences.

Although precursors exist, the current table is generally credited to Dmitri Mendeleev, who developed it in 1869 to illustrate periodic trends in the properties of the then-known elements; the layout has been refined and extended as new elements have been discovered and new theoretical models developed to explain chemical behavior. Mendeleev's presentation also predicted some properties of then-unknown elements expected to fill gaps in his arrangement; most of these predictions were proved correct when those elements were discovered and found to have properties close to the predictions.

All elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been synthesized. Of these, all up to and including californium exist naturally; the rest have only been artificially synthesised in laboratories, along with numerous synthetic radionuclides of naturally occurring elements. Production of elements beyond ununoctium is being pursued, with the question of how the periodic table may need to be modified to accommodate these elements being a matter of ongoing debate.

Russian chemistry professor Dmitri Ivanovich Mendeleev and German chemist Julius Lothar Meyer independently published their periodic tables in 1869 and 1870, respectively. They both constructed their tables in a similar manner: By listing the elements in a row or column in order of atomic weight and starting a new row or column when the characteristics of the elements began to repeat. The success of Mendeleev's table came from two decisions he made: The first was to leave gaps in the table when it seemed that the corresponding element had not yet been discovered. Mendeleev was not the first chemist to do so, but he was the first to be recognized as using the trends in his periodic table to predict the properties of those missing elements, such as gallium and germanium. The second decision was to occasionally ignore the order suggested by the atomic weights and switch adjacent elements, such as cobalt and nickel, to better classify them into chemical families. With the development of theories of atomic structure, it became apparent that Mendeleev had listed the elements in order of increasing atomic number.

Metal

A metal is an element, compound, or alloy that is a good conductor of both electricity and heat. Metals are usually malleable, ductile and shiny, that is they reflect most of incident light. In a metal, atoms readily lose electrons to form positive ions (cations). Those ions are surrounded by de-localized electrons, which are responsible for the conductivity. The solid thus produced is held by electrostatic interactions between the ions and the electron cloud, which are called metallic bonds.

Metals are sometimes described as an arrangement of positive ions surrounded by a sea of delocalized electrons. Metals occupy the bulk of the periodic table, while non-metallic elements can only be found on its right-hand side. A diagonal line, drawn from boron (B) to polonium (Po), separates the metals from the nonmetals. Most elements on this line are metalloids, sometimes called semiconductors. This is because these elements exhibit electrical properties common to both conductors and insulators. Elements to the lower left of this division line are called metals, while elements to the upper right of the division line are called nonmetals.

An alternative definition of metal refers to the band theory. If one fills the energy bands of a material with available electrons and ends up with a top band partly filled then the material is a metal. This definition opens up the category for metallic polymers and other organic metals. These synthetic materials often have the characteristic silvery gray reflectiveness (luster) of elemental metals.

Nonmetal

Nonmetal, or non-metal, is a term used in chemistry when classifying the chemical elements. On the basis of their general physical and chemical properties, every element in the periodic table can be termed either a metal or a nonmetal. (A few elements with intermediate properties are referred to as metalloids).

The elements generally regarded as nonmetals are:

  • hydrogen

  • In Group 14: carbon (C)

  • In Group 15 (the pnictogens): nitrogen (N), phosphorus (P)

  • In Group 16 (the chalcogens): oxygen (O), sulfur (S), selenium (Se)

  • All elements (with the possible exception of ununseptium) in Group 17 - the halogens

  • All elements (with the possible exception of ununoctium) in Group 18 - the noble gases

There is no rigorous definition for the term "nonmetal" - it covers a general spectrum of behaviour. Common properties considered characteristic of a nonmetal include:

  • poor conductors of heat and electricity when compared to metals

  • they form acidic oxides (whereas metals generally form basic oxides)

  • in solid form, they are dull and brittle, rather than metals which are lustrous, ductile or malleable

  • usually have lower densities than metals

  • they have significantly lower melting points and boiling points than metals (with the exception of carbon)

  • non-metals have high electronegativity

Only eighteen elements in the periodic table are generally considered nonmetals, compared to over eighty metals, but nonmetals make up most of the crust, atmosphere and oceans of the earth. Bulk tissues of living organisms are composed almost entirely of nonmetals. Most nonmetals are monatomic noble gases or form diatomic molecules in their elemental state, unlike metals which (in their elemental state) do not form molecules at all.

Hydrogen

Hydrogen is a chemical element with symbol H and atomic number 1. With an average atomic weight of 1.00794 u (1.007825 u for hydrogen-1), hydrogen is the lightest element and its monatomic form (H1) is the most abundant chemical substance, constituting roughly 75% of the Universe's baryonic mass. Non-remnant stars are mainly composed of hydrogen in its plasma state.

At standard temperature and pressure, hydrogen is a colorless, odorless, tasteless, non-toxic, nonmetallic, highly combustible diatomic gas with the molecular formula H2. Naturally occurring atomic hydrogen is rare on Earth because hydrogen readily forms covalent compounds with most elements and is present in the water molecule and in most organic compounds. Hydrogen plays a particularly important role in acid-base chemistry with many reactions exchanging protons between soluble molecules.

In ionic compounds, it can take a negative charge (an anion known as a hydride and written as H−), or as a positively charged species H+. The latter cation is written as though composed of a bare proton, but in reality, hydrogen cations in ionic compounds always occur as more complex species.

The most common isotope of hydrogen is protium (name rarely used, symbol 1H) with a single proton and no neutrons. As the simplest atom known, the hydrogen atom has been of theoretical use. For example, as the only neutral atom with an analytic solution to the Schrödinger equation, the study of the energetics and bonding of the hydrogen atom played a key role in the development of quantum mechanics.

Hydrogen gas was first artificially produced in the early 16th century, via the mixing of metals with strong acids. In 1766–81, Henry Cavendish was the first to recognize that hydrogen gas was a discrete substance, and that it produces water when burned, a property which later gave it its name: in Greek, hydrogen means "water-former".

Industrial production is mainly from the steam reforming of natural gas, and less often from more energy-intensive hydrogen production methods like the electrolysis of water. Most hydrogen is employed near its production site, with the two largest uses being fossil fuel processing (e.g., hydrocracking) and ammonia production, mostly for the fertilizer market.

Hydrogen is a concern in metallurgy as it can embrittle many metals, complicating the design of pipelines and storage tanks.

Sodium

Sodium is a chemical element with symbol Na (from Latin: natrium) and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals; its only stable isotope is 23Na. The free metal does not occur in nature, but instead must be prepared from its compounds; it was first isolated by Humphry Davy in 1807 by the electrolysis of sodium hydroxide. Sodium is the sixth most abundant element in the Earth's crust, and exists in numerous minerals such as feldspars, sodalite and rock salt. Many salts of sodium are highly water-soluble, and their sodium has been leached by the action of water so that chloride and sodium are the most common dissolved elements by weight in the Earth's bodies of oceanic water.

Many sodium compounds are useful, such as sodium hydroxide (lye) for soapmaking, and sodium chloride for use as a deicing agent and a nutrient. Sodium is an essential element for all animals and some plants. In animals, sodium ions are used against potassium ions to build up charges on cell membranes, allowing transmission of nerve impulses when the charge is dissipated. The consequent need of animals for sodium causes it to be classified as a dietary inorganic macro-mineral.

Sodium at standard temperature and pressure is a soft metal that can be readily cut with a knife and is a good conductor of electricity. Freshly exposed, sodium has a bright, silvery luster that rapidly tarnishes, forming a white coating of sodium hydroxide and sodium carbonate. These properties change at elevated pressures: at 1.5 Mbar, the color changes to black, then to red transparent at 1.9 Mbar, and finally clear transparent at 3 Mbar. All of these allotropes are insulators and electrides.

When sodium or its compounds are introduced into a flame, they turn it yellow, because the excited 3s electrons of sodium emit a photon when they fall from 3p to 3s; the wavelength of this photon corresponds to the D line at 589.3 nm. Spin-orbit interactions involving the electron in the 3p orbital split the D line into two; hyperfine structures involving both orbitals cause many more lines.

Sodium is generally less reactive than potassium and more reactive than lithium. Like all the alkali metals, it reacts exothermically with water, to the point that sufficiently large pieces melt to a sphere and may explode; this reaction produces caustic sodium hydroxide and flammable hydrogen gas. When burned in dry air, it mainly forms sodium peroxide as well as some sodium oxide. In moist air, sodium hydroxide results. Sodium metal is highly reducing, with the reduction of sodium ions requiring −2.71 volts but potassium and lithium have even more negative potentials. Hence, the extraction of sodium metal from its compounds (such as with sodium chloride) uses a significant amount of energy.

Список использованной литературы

  1. Борисова Л.И. Лексические особенности англо-русского научно-технического перевода. Теория и практика переводов, Учебное пособие для вузов, «НВИ-Тезаурус», 2005.

  2. Комиссаров В.Н. Лингвистические основы научно-технического перевода // Пособие по научно-техническому переводу. М., 1980.

  3. Артёменко А.И. Органическая химия, М., «Просвещение», 2002.

  4. Дейл Н., Селбин Д. Теория неорганической химии, М., «Мир», 1976.

  5. Рудзитис Г.Е. Химия, М., «Просвещение» , 2006.

  6. Угай Я.Я. Общая химия, М., «Высшая школа», 1970.

  7. Данилина Е.И. Химия на английском языке. Пособие по переводу химических текстов с русского на английский,Челябинск, 2007.

  8. Родзевич Т.Н. Кабо П.Д. Сборник текстов для чтения на английском языке. М., «Высшая школа», 1985.

  9. Касторнова О.Н. Учебное пособие по английскому языку для студентов неязыковых вузов, МГАУ, 2005.

  10. Турук И.Ф., Стойкова В.Н. Пособие по переводу научно-технических текстов с английского языка на русский, «Высшая школа», 1975.

  11. Мельникова Л.В. Английский язык для студентов химических специальностей и направлений.

  12. Учебно-методическое пособие по разговорной практике для студентов I, II курсов неязыковых факультетов. – Тюмень: ТюмГУ, 2006.

  13. Циммерман М., Веденеева К. Русско-английский научно-технический словарь переводчика. М.: Наука; John Wiley & Sons LTD, 1991.

  14. Иванов В.М., Золотов Ю.А. Русско-английский и англо-русский словарь терминов по аналитической химии. М.: Изд-во Лаб-Пресс, 2004.

  15. Гречина О.В. Английский для студентов неязыковых вузов, М., «Высш. школа», 1977.

  16. Серебренникова Э.И., Круглякова И.Е. Английский язык для химиков: Учеб. для студентов химико-технолог. спец. Вузов, М., Химия, 1989.

Использованные материалы и Интернет-ресурсы

  1. http://www.twirpx.com/files/languages/english/translation/

  2. http://ru.wikipedia.org/wiki/

  3. http://copy.yandex.net/?text.Родзевич Т.Н. Кабо П.Д. Сборник текстов для чтения на английском языке&url

Похожие:

Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconТематическое планирование уроков химии в 8-11 классах 6 Программа факультатива «Основы химии»
Система преподавания химии в сельской школе как средство профессионального самоопределения учащихся и их подготовки к поступлению...
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconПрограмма курса химии  и примерное календарное  планирование  8-9 классы   
Настоящая  программа  раскрывает  содержание  обучения  химии  учащихся  в  8—9  классах 
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconТематика творческих работ слушателей криппо по: химии формирование здорового образа жизни на уроках химии и во внеурочное время. Экологическое воспитание и образование на уроках химии.
Содержание, формы и методы работы методических объединений учителей химии (городских, районных, школьных) (реферат)
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconПрограмма курса химии для 8-9 классов общеобразовательных учреждений пояснительная записка
...
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconЭтапа эксперимента
Это перегрузка курса химии основной школы в связи с переходом на концентрическую систему и сокращение объема часов на изучение химии...
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconГородская контрольная работа по химии в 10-х классах

Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconXii молодежная конференция по органической химии
Молодежная конференция по органической химии продолжает серию школ-конференций, проводимых ежегодно, начиная с 1998 года (Екатеринбург,...
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconК лабораторному практикуму  по курсу химии  
История кафедры химии     
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconПроект урока по химии «Общая характеристика щелочных металлов»
Программа курса химии для 8-11 классов общеобразовательных учреждений О. С. Габриелян
Спецкурс по химии на английском языке в старших профильных классах «Перевод текстов по химии» iconОтделение химии и наук о материалах   институт химии высокочистых веществ
Оргкомитет IV научной Школы для молодых ученых "Высокочистые моноизотопные вещества" приглашает Вас принять участие в работе Школы,...
Разместите кнопку на своём сайте:
TopReferat


База данных защищена авторским правом ©topreferat.znate.ru 2012
обратиться к администрации
ТопРеферат
Главная страница