Ее авторе и тех временах




НазваниеЕе авторе и тех временах
страница6/23
Дата конвертации06.02.2013
Размер3.78 Mb.
ТипДокументы
1   2   3   4   5   6   7   8   9   ...   23
Зарождение нервной системы

Каждое химическое явление имеет свой электрический «отблеск», сопровождается теми или иными колебаниями электрического потенциала. Ведь мы знаем, что само химическое сродство (например, стремление кислоты соединиться со щелочью или фосфора — с кислородом) имеет электрическую природу. В своей основе это есть общеизвестное из физики взаимное притяжение разноименных электрических зарядов. Не могли обойтись без такой электрической подкладки и явления медиаторного возбуждения. Тут и возбуждение рецептивных элементов, и действие медиатора на мышечные клетки, и само ответное сокращение этих клеток сопровождались изначала легкими, паутинными колебаниями электрического заряда, из всей нашей современной электротехники больше всего похожими по величине на колебания зарядов в антенне радиоприемника при приеме сигналов откуда-нибудь из Новой Зеландии.

И здесь, где нам впервые по ходу рассказа встречаются биоэлектрические явления, т.е. проявления электричества в жизненных процессах, введем сразу удобный масштаб для ясного представления о их действительных величинах. Только в данном случае, обратно с масштабом времени, нам придется применить сопоставление масштабов, создающее представление о действительных значениях электрических напряжений в нервах и мышцах. Условный масштаб метров — 1 вольт. В этом масштабе Эверест соответствует 120-вольтовому напряжению осветительной сети, Эйфелевая башня — напряжению сухой батарейки карманного фонаря, кривая под циферблатом карманных часов — колебаниям напряжения в передающем возбуждение нервном волокне человека сильные увеличения; недаром и в лабораториях для регистрации этих явлений пользуются мощными радиоусилителями.

В предлагаемом нами масштабе один вольт изобразится высотою в 65 метров (это приблизительно высота гостиницы «Москва» в нашей столице). Напряжение сухой батарейки для карманных фонариков равно в этом масштабе высоте Эйфелевой башни в Париже, напряжение нашей 120-вольтовой осветительной сети — высоте короля гор земного шара, Эвереста.

Так вот, в этом масштабе колебание потенциала при работе нашей произвольной скелетной мускулатуры равно нескольким сантиметрам, а колебание потенциала в мышцах тех низших животных, о которых сейчас идет речь, и в нервных клеточках головного мозга человека — не больше буквы шрифта, которым напечатана эта книга. Биотоки, бегущие по нашим нервам, так же относятся к напряжению, способному засветить лампочку карманного фонарика, как бугорки на озябшей, «гусиной», коже — к башне Эйфеля. Надеемся, что такие сопоставления помогут читателю что-то себе представить.

Значение этого, по началу совершенно побочного, факта огромно, и мы постараемся его объяснить. В последний раз сформулируем подробно, как именно подействовал здесь всеобщий великий принцип развития в природе — естественный отбор наиболее приспособленных экземпляров. В дальнейшем мы будем еще не один раз встречаться с ним в той же самой форме; вы: несем его «за скобки» так, как в математике выносят за скобки общий сомножитель, относящийся в одинаковой мере ко всем последующим членам математической формулы, и будем потом ради краткости уже просто ссылаться на него.

Итак, получилось (в порядке случайных прирожденных изменений, всегда бывающих в известных пределах у различных особей), что у некоторых экземпляров их мышечные клетки оказались возбудимыми не только от прямого химического воздействия медиатора, но уже и от одного только электрического спутника последнего — от того, неуловимо малого электрического колебания, которым он всегда сопровождался. Легко понять, какие большие преимущества в борьбе за существование получили эти экземпляры с «электровозбудимыми» мышцами перед своими не столь чуткими собратьями. Во-первых, волна электрического импульса имеет гораздо большую скорость, нежели раствор, медленно сочащийся по межтканевым щелям, — значит, она дает возможность ее обладателю реагировать во много раз быстрее. Во-вторых, электрический возбуждающий импульс несет в себе хоть какие-то возможности для его заадресовки в ту или другую мышечную группу, в то время как жидкость, содержащая медиатор, обязательно омывает весь организм. Неудивительно, что вновь открытый природой электрический, так сказать — телеграфный, принцип передачи возбудительных импульсов начал энергично завоевывать себе командное положение. Особи, почему-либо обделенные им, слишком уж быстро гибли, оставляя чересчур слабое потомство, чтобы соперничать с более совершенными формами. С электрическим сигналом возбуждения, сперва только призвуком к основному — химическому возбудительному процессу, а потом ставшим самостоятельным физиологическим деятелем первостепенного значения, случилось нечто очень напоминающее известную и полную глубокого смысла сказку Андерсена о профессоре и его тени. В этой, сказке тень профессора, оторвавшись в какой-то момент от его ног, сумела затем быстрыми шагами сделать себе большую придворную карьеру и через год пришла к своему бывшему хозяину и носителю, не столь преуспевшему в жизни, предложить ему службу при своей особе в качестве ее собственной тени.

Вначале, несомненно, биоэлектрические импульсы распространялись по телу животного диффузно, расплываясь. Но постепенно вычленились (или, говоря биологическим языком, отдифференцировались) волокна, обнаруживавшие лучшую проводимость для этих биотоков. Такие волокна, или фибриллы, представляли собою длинные отростки клеток. В организмах вообще все ткани состоят из клеток и их придатков, и все их развитие и питание — словом, вся жизнь, зависит от клеток, являющихся, так сказать, питательными и поддерживающими жизнь депо для тканевых элементов. Специализировавшиеся на передаче импульсов (пора уже начать называть их нервными импульсами) волоконца образовали внутри организма сети, там и сям содержавшие в себе клетки для поддержания жизни этих волокон. Этим скромным сетям с раскиданными по ним одиночными, никак не специализированными клетками не могло и грезиться в то время, что когда-нибудь, в отдаленнейшем будущем, на их долю выпадет занять абсолютно главенствующее положение в организме в качестве его центральной нервной системы. Пока этот малозаметный вестовой-связист нес свою не слишком значительную службу по передаче сообщений от рецептивных клеток к мышечным, и никто не мог бы предсказать в ту древнюю пору, что в его ранце лежит жезл главнокомандующего. Специализация питательных клеток, передаточных, первичнонервных сетей, превращение их в настоящие нервные клетки и образование централизованных скоплений этих клеток, так называемых нервных узлов, или ганглиев, совершилось значительно позже.

Как ротовой конец тела стал его головным и главным концом

Теперь мы переходим к новому перевороту, к новому диалектическому скачку в истории развития движений и двигательных аппаратов. Причины этого очередного переворота выглядят более чем скромно и незначительно. Так часто бывает в природе: ничтожные на вид причины ведут подчас к огромным по значению последствиям. В этом, несомненно, отчасти таится объяснение того, почему даже очень высокоразвитой науке трудно точно предсказывать будущее, и исключения из этого правила (например, астрономия с ее предсказаниями затмений) редки и узки. Расположите на одной прямой три биллиардных шара по 25 мм на расстоянии метра один от другого и затем ударьте первый шар так, чтобы он, стукнув «в лоб» второй шар, послал его точно так же «в лоб» третьему. Расчет показывает, что если первый шар отклонится от идеального направления на одну тысячную, или на 3,5 угловой минуты, то второй даст ошибку уже в одну пятидесятую, или больше градуса, а третий отклонится от прямого направления уже; на целых 25 градусов, т. е. более чем на четверть прямого угла. Подобное же лавинообразное нарастание последствий как будто ничтожного обстоятельства имело место и на том этапе истории движений, о котором я собираюсь теперь рассказать.

Таким маловажным на вид обстоятельством оказалось появление на Земле продолговатых, колбасовидных животных форм. Те классы животных (2-й и 3-й по нашей табличке), которые были описываемы до сих пор, имели округло-симметричные формы, с ротовым отверстием посередине. Очертания тела низших из них, кишечнополостных, менее определенны; это по сути дела, мешки с. одним отверстием, что понуждает их заменять естественные отправления тела рвотой. Более подвинутые в своем развитии (сквозной пищеварительный канал) иглокожие имеют лучистое строение и кругом центрального рта обладают пятью, симметричными отростками (лучами у морских звезд, лимонообразными дольками и у морского ежа и т. д.).

На смену им начинают появляться продолговатые животные (в последующем — черви и моллюски) с пищеварительной трубкой, тянущейся во всю длину их тела, с ротовым отверстием на одном и заднепроходным — на другом конце. В ротовом конце-то и было все дело. Ясно, что ротовой конец тела — это активный конец его. Он ищет питания, он первым сталкивается с добычей, первым зато — и с опасностью. Он, как правило, движется впереди.

По вполне понятным причинам чувствительность покровов тела на этом конце увеличивается (мы, как уже обусловлено, не будем, повторять того, каким путем случайные благоприятные изменения закреплялись посредством отбора). Переднему концу тела важнее, чем какой-либо другой его точке, тонко и своевременно ощутить свойства того, с чем он соприкоснулся, к чему он подполз. Но кроме обострения древних видов чувствительности (осязательная, температурная вкусовая, химическая), которые можно объединить под общим названием контактной чувствительности или чувствительности непосредственного соприкосновения, на переднем, ротовом, конце начинают развиваться качественно новые, более совершенные виды органов чувств, или рецепторов, как мы их уже однажды назвали. Новым рецепторам удобно присвоить, воспользовавшись широко привившейся у нас в техническом языке приставкой; имя телерецепторов. По аналогии этого слова с такими терминами, как телефон, телеграф, телевидение, телемеханика и т. п., легко понять его смысл: речь идёт о дальнодействующих или дальнобойных рецепторах. Каждый из древних видов контактных рецепторов, видоизменяясь, породил один из высокоусовершенствованных дальнодействующих. Орган химической. чувствительности — вкус — дал начало химическому телерецептору— органу обоняния. Осязательная чувствительность – переднего конца, утончаясь, обратилась в чувствительность, к частым и мелким сотрясениям, или вибрациям, передаваемым издали через окружающую среду: в орган слуха, слышания звуков, которые и есть не что иное, как колебания, или вибрации, воды или воздуха. Наконец, температурная контактная чувствительность преобразовалась сперва в восприимчивость к лучистой теплоте, а затем и к лучистой энергии самого мощного отдела солнечного спектра — световой энергии. Отсюда, таким образом, возникло зрение.

Значение, какое имели для развития организмов и их движений телерецепторы, невозможно даже охватить сразу. Прежде всего, они обусловили огромный рост объема того мира, который был доступен восприятию животного. Контактные рецепторы открывают животному мир самое большее на несколько сантиметров во все стороны; телерецепторы расширяют его до многих сотен метров. Животное, обладающее одной только рецепторикой непосредственного соприкосновения, слепое, глухое и лишенное обоняния, не чует добычи, если только случайно не наткнется на нее, и не подозревает об опасности, находящейся от него на расстоянии вершка. Преимущества особи, способной обнаружить то и другое за сотню метров, настолько очевидны, что не требуют пояснений.

Отсюда проистекает вот что. Если животному приходится жить только в мире тех раздражителей, которые непосредственно соприкасаются с ним, то и его двигательные нужды более чем ограничены. Ощутит оно какою-нибудь точкой тела болезненное, неприятное раздражение — оно отодвинет непосредственно пострадавшую часть тела местным сокращением мышц, и только. Пищу оно почует не раньше, чем она окажется около самого рта, и когда опять-таки достаточно будет небольшой перемены позы, чтобы захватить ее в рот. Тела животных продолговатых классов построены из члеников, или сегментов, очень хорошо заметных, например, у дождевого червя или пиявки. Каждое из раздражений описываемой категории, падая на один из члеников-сегментов их тела, вызовет чисто местное смещение —в пределах либо одного лишь затронутого членика, либо, самое большее, еще нескольких соседних.

Представим себе теперь животное из той же низко развитой группы, но уже наделенное телерецепторикой. Если добыча или опасность, которую оно уже способно завидеть или почуять, отстоит от него на десятки метров, то; разумеется, все точки его тела находятся от нее практически на одном и том же расстоянии. Какие бы то ни было местные шевеления или изменения позы в этом случае бесполезны. Необходимо устремиться всем телом или к замеченному предмету, если он привлекателен, или прочь от него, если вид его не сулит ничего доброго: Следовательно, восприятия, обеспечиваемые дальнодействующей рецепторикой, обусловливают уже не члениковые, или сегментарные, телодвижения; а переместительные движения всего тела как целого в пространстве — то, что в науке о движениях называется локомоциями (К локомоциям, или перемещениям всего тела по пространству, у человека причисляются: ходьба, бег, плавание, лазание и локомоторные движения с орудиями, как ходьба на лыжах, бег на коньках и т. п.)

Нетрудно понять дальше, насколько изменяются те требования, которые новый класс движений предъявляет к нервной системе. Если для древних сегментарных смещений тела достаточно было чисто местных реакций, в лучшем случае вовлекавших еще два-три смежных членика, то для целостного локомоторного передвижения всего тела по пространству необходима уже согласованная, объединенная деятельность мышц всего организма, перемещающая его как целое в едином требуемом направлении. Значит, нужны центры, способные обеспечить такой совместный, согласный хор, всей мускулатуры тела. Естественно, что этим центрам всего более подходит помещаться на переднем конце, так сказать, на капитанском мостике всего тела, там, где находятся все телерецепторы, и там, откуда наиболее открытый вид для наблюдения. Эти центры и объединяют работу всей мускулатуры тела, как говорят, интегрируют ее, в едином ритме и в общем смысловом содержании всего движения; эти же центры и возглавляют движение, т.е. берут на себя и инициативу того, когда и какое движение следует предпринять, и решения обо всех последующих изменениях в их ходе.

Нельзя умолчать еще об одном качественном сдвиге, причиной которого явились телерецепторы. Заманчивый или угрожающий предмет, завиденный на далеком расстоянии, дает животному срок для целой цепочки планомерных действий. То, что замечено издали, замечено загодя. При этих условиях животное может успеть спрятаться, может выбрать подходящую засаду и затаиться в ней, может развить целую более или менее сложную тактику нападения или самообороны. А это ведет (опять-таки уже описанным порядком естественного отбора) к развитию:

1) зачатков памяти, способной удержать всю цепочку запланированных действий и не перепутать их порядок;

2), зачатков соображения, пригодного для изобретения подходящей цепочки действий и, наконец,

3) зачатков ловкости, позволяющей животному найти реальный, действенный выход из положения.

И то, и другое, и третье качества предполагают уже какой-то более или менее работоспособный мозг.

Таким путем, ротовой конец оказался сперва, по неминуемой логике вещей, передним концом тела, а затем, оснастившись в качестве переднего высокопробными телерецепторами, стал головным концом тела и, наконец, его главным концом. Так получилось, что рот создал телерецепторы, а эти последние— головной мозг.

Оборона или наступление?

Мы приближаемся к событию, имевшему исключительное значение в истории развития движений.

Мы уже видели, что в древнейшие времена, когда еще мысль не зародилась на Земле, ведущий командный пост в эволюции животных занимали как раз движения: для них развивались и уточняли свою работу телерецепторы, во их успешность воздвигался первобытный головной мозг. Поэтому то крупное изменение в двигательных средствах (ресурсах) животного, к описанию которого мы переходим, оказало могущественное влияние на все органы животного, на все системы его отправлений. Можно даже сказать, что вся последующая судьба высших представителей животного мира в немалой мере определилась из последствий переворота, совершившегося в ту пору.

Условия борьбы за существование, конкуренция между живыми тварями постепенно становились все жестче и злее. Жизнь уже не могла мириться с медлительными, мягкотелыми организмами, рыхлыми, как студень, и подвижными вроде часовой стрелки. Борьба и отбор требовали новых исканий.

Как и в военной технике, тут шло чередование: то вперед выдвигался принцип пассивной обороны — принцип бронезащиты, то искания природы обращались к принципам активной борьбы, к усилению средств наступательной техники.

Сперва как будто на некоторое время возобладал первый принцип: у высших мягкотелых — моллюсков — стали возникать прочные панцири-раковины, в которые животное могло в случае нужды укрываться целиком. Очевидно, это помогло мало и ненадолго, так как на ближайшем следующем этапе эволюции мы наблюдаем уже ярко выраженное торжество активного принципа — в виде того самого события, к которому вплотную подходит теперь наше повествование. Это событие (делаем о нем последнее вступительное примечание) представляет собой огромный диалектический скачок к совершенно новому оснащению двигательных аппаратов животных. Несмотря на глубокую пропасть между старыми и новыми органами движения, перекрытую этим скачком, и на полное отсутствие каких-либо переходных форм между теми и другими, этот скачок, разумеется, не был мгновенным по времени. Эволюция всегда протекает крайне медленно с точки зрения наших человеческих понятий, и, несомненно, победа новых органов потребовала не одного десятка тысячелетий (Диалектические скачки в эволюции — это всегда обязательно скачки по качеству, но отнюдь не скачки в смысле внезапности.).

Тем не менее этот долгий срок потребовался не на постепенную, со всеми переходами, выработку новых двигательных органов — мы уже подчеркнули, что таких переходных форм совсем не было, — а только на то, чтобы эти новые органы, которые в какой-то момент эволюции имелись как полуслучайное изменение у двух-трех особей, сто тысяч веков спустя стали достоянием всего соответственного многомиллионного поголовья.

Освоение поперечнополосатой мышцы

Основой события, предрешившей весь последовавший переворот, было возникновение поперечнополосатой мышцы — точнее говоря, поперечнополосатого мышечного волокна, еще точнее — микроскопически малой круглой пластиночки (величиной с красное кровяное тельце, т. е. меньше одной сотой миллиметра в поперечнике). Из огромного количества таких пластиночек, нанизанных одна за другой, как бусы на нитку, состоит каждое мышечное волокно; из многих тысяч параллельно идущих волокон составлена каждая мышца нашего скелетно-двигательного аппарата. Пластиночки называются анизотропными дисками; сократив это название, мы будем именовать их дальше анизоэлементами мышцы.

Поперечнополосатая мышца (несколько ниже мы увидим, чем объясняется такое ее название) полностью решила проблему быстроты и мощности — того, чего так жестоко не хватало древним мягкотелым всех видов. Мышца нового типа способна сокращаться с молниеносной быстротой (вспомним хотя бы движения крыльев мухи или комара, совершаемые с частотою нескольких сотен в секунду). При этом, сокращаясь, она легко развивает высокую мощность, в тысячи раз превосходящую, при том же весе, то, что в состоянии были давать древние мышечные клетки (так называемые гладкие мышцы).

Очень похоже на то, что на принцип поперечнополосатой мышцы эволюция набрела случайно: об этом говорит уже упоминавшееся нами полное отсутствие переходных или промежуточных форм, которые указывали бы на какое-либо систематическое развитие в этом направлении. Единственным исключением является поперечнополосатая мышца сердца, позвоночных животных, несколько более древняя, чем их скелетные мышцы. Но отличия сердечной мышцы от скелетных так незначительны и, главное, все основные, принципиальные новшества, присущие поперечнополосатой мышце, уже настолько полно представлены в ней, что ее нельзя расценить как переходную форму. Очевидно, уж очень велики были биологические преимущества поперечнополосатой мышечной ткани, потому что она привилась сразу и без колебаний и победоносно распространилась на сотни тысяч видов разных животных, несмотря, как увидим ниже, на свои большие недостатки и неудобства.

Появление долгожданного быстрого и мощного двигателя пробудило очень горячую и далеко зашедшую приспособительную работу в животных организмах. Вялые и слабые «гладкие» мышечные клетки хорошо уживались с мягкими и рыхлыми телами их носителей. Не то получилось, когда на сцену появились сокращения, быстрые и могучие, как выстрел. Поместить такую мышцу в тело червя или медузы — это почти все равно, что пытаться зарядить современным артиллерийским снарядом вместо пушки колбасную кожицу. Теперь срочно потребовались жесткие и прочные рычажные устройства, которые обладали бы хорошей подвижностью и вместе с тем обеспечивали бы новой мышце солидные точки приложения сил для ее мощных, резких сокращений.

Эволюционная работа по созданию таких жестких рычажных устройств протекала настолько своеобразно, что рассказать о ней хочется, в виде небольшого уподобления. Мы надеемся, что после всего сказанного выше о принципах эволюции и отбора такое уподобление не сможет повести к недоразумениям, а в то же время оно способно придать изложению более образную и яркую форму.

Дело пошло так, как будто бы на великом конкурсе, объявленном жизнью на наилучшее оснащение для поперечнополосатой мышцы, первую премию поделили между собой два разных проекта. Оба они по первоначальному рассмотрению как будто одинаково хорошо и остроумно решали поставленную конкурсом задачу, хотя решали ее глубоко различными между собой способами. Один из проектов шел под девизом Arthropoda (членистоногие), другой — под девизом Vertebrata (позвоночные). Оба проекта исходили из, поперечнополосатой мышцы как чего-то уже данного и оба объединяли ее с жесткими, суставчатоподвижными скелетами; то и другое входило, очевидно, в «технические условия» конкурса.

Проект под девизом Arthropoda, осуществившийся на сороконожках, ракообразных, пауках и на всех насекомых, состоял в применении в качестве скелетов прочных, полых внутри, панцирей, похожих на суставчатые рыцарские латы. Мышцы размещались внутри этих шарнирных панцирей, перекидываясь из одного их членика в другой и изнутри же приводя их в движение. Латы, облекавшие все тело животного (яркий пример - рак), прекрасно решали задачу брони, остроумно объединяя ее с задачей рычажной подвижности, требовавшейся новым мышцам. С другой стороны наружные панцирные скелеты насекомых и ракообразных прекрасно решали и задачу устойчивости, не нуждаясь для нее ни в какой помощи со стороны мышц. Это хорошо подтверждается; простым опытом. Если осторожно усыпить насекомое или ракообразное, например поднеся к их голове ватку с эфиром или бензином, то усыпленное или даже убитое этим способом животное полностью сохраняет свою устойчивость: продолжает стоять, как и стояло. Для сравнения напомним, что усыпленное или умерщвленное с любой осторожностью позвоночное животное неминуемо падает. Таким образом, у членистоногих мышца полностью разгружена от каких бы то ни было побочных обязанностей, вроде только что упомянутых опорных, и занимается только своим основным делом, к которому она лучше всего приноровлена, — активными сокращениями, Это кладет известный отпечаток и на ее микроскопическое строение, заметно упрощая его в подробностях сравнительно с мышцами у позвоночных. То, что мы в нашем сделанном выше уподоблении назвали проектом под девизом Vertebrata и что представляет собою скелетно-мышечное устройство позвоночных, решает возникшую задачу принципиально другим, почти обратным путем, Жесткие звенья — кости, сочлененные между собою в цепочки, — помещаются у этих животных в самой середине каждого звена тела, по его продольной оси. Мышцы облегают его снаружи, со всех тех сторон, где они по условиям подвижности могут понадобиться. Если у суставов имеются стороны, в которые они не могут двигаться (например, локтевой сустав человека — сгибаться в стороны, а не вперед и назад), то с этих сторон вместо более дорогой и нежной мышечной ткани размещается более грубая связочно-сухожильная. Так или иначе, но каждый сустав закреплен со всех сторон гибкими растяжками — мышцами или связками, так сказать расчален ими, очень похож ни то, как расчаливают высокие мачты судов или радиопередаточных станций. Такой принцип мышечного монтажа выглядит поначалу менее удобным и ясным, чем тот, который имеет место у насекомых, и загружает мышцу кроме ее прямых функций двигателя еще добавочной опорной (так называемой статической) работой, к которой к тому же поперечнополосатая мышца не слишком хорошо приспособлена. Зато получается явный выигрыш по части гибкости — и пассивной, и активной. Сравните речного рака в его неуклюжих доспехах с рыбкой или змейкой, гибкими, как их бесскелетные предшественники — мягкотелые. Вспомним, что самые древние из позвоночных, рыбы, первыми появившиеся на свет во времена описываемого нами «великого конкурса», в сущности, еще не имели настоящих конечностей. Эти органы выработались у позвоночных позже; в начале же их бытия на Земле они состояли почти целиком из одного позвоночного столба, несшего на себе многокостный, еще не сросшийся череп и гибкую грудную клетку. Позвоночник же, составленный из множества подвижно соединенных члеников, обеспечивал им возможность самых богатых и свободных изгибаний.
Пороки поперечнополосатой мышцы

Еще одно обстоятельство подкрепляет наше заключение о том, что принцип поперечнополосатой мышцы был найден как-то разом и почти случайно, хотя биологическая потребность в нем уже давно назрела в высшей степени. Набредя на этот принцип, жизнь как будто ухватилась за него и сразу, без всяких переделок и вариантов, применила к оснащению подвижных скелетов. Дело в том, что при более внимательном рассмотрении физиологии поперечнополосатой мышцы она оказывается не таким-то удобным, а, главное, в целом ряде отношений просто мало подходящим к своему назначению органом. Очевидно, ее принцип обладал чем-то столь положительным, что жизнь на первых порах уверовала в него слепо, как будто не замечая его очень крупных недостатков; а позднее, когда они в полной мере обнаружились, точно спохватилась, что в свое время не озаботилась сформулировать как следует необходимые «технические условия» устройства и работы новой мышцы. (Мы и здесь выражаем надежду, что нам будут извинены -наши образные олицетворения, которые мы снова отметим в ближайшем абзаце изложения, но которые помогут нам правильно подчеркнуть важнейшие факты и расставить, как говорится, точки над i). Поперечнополосатая мышца в том виде, как она вылилась из рук эволюции, оказалась кое в чем очень важном до такой степени мало отвечающей своему назначению, что пришлось поспешно и очень компромиссно искать способы для ее прилаживания. Другого двигателя все равно не находилось. Во-первых, оказалось, что манера сокращения поперечнополосатой мышцы, точнее сказать — ее микроскопически малой активной составной частички, анизоэлемента (см. выше), совершенно не подходит к тому, что было бы биологически нужно. Эта манера, как показывают точнейшие записи на современных приборах, — грубый и резкий рывок, настолько внезапный и сходный со взрывом, что возникала прямая опасность искрошить скрепленные с такою мышцей кости. Компромисс, который выработался как мера борьбы с этой никуда не пригодной резкостью, состоял в том, что микроскопические авизо-элементы были переслоены такими же крохотными элементиками упругой сухожильной ткани (так называемыми изо-элементами). Мышечное волокно получило вид, похожий под микроскопом на столбик из чередующихся между собою двадцати и трехкопеечных монет, соответствующих размещенным там по очереди анизо- и изо-элементам. Эти последние играют роль упругих буферов, или, как теперь говорят, амортизаторов, для яростных рывков анизодвигателей: они растягиваются во время рывков и затем уже более плавно и постепенно укорачиваются вновь, помогая мышце совершать, ее работу. Чередование в каждом волокне анизо- и изо-элементов, обладающих разной окраской и качеством прозрачности, и придает волокну тот поперечноисчерченный вид, который обусловил название всей мышцы.

Во-вторых, анизо-элементы совершенно не способны к длительным сокращениям, более того — к какой бы то ни было регулировке их длительности.

Все, что способен дать анизо-элемент, — это чрезвычайно короткую вспышку напряжения и сокращения: в мышцах человека она продолжается обычно не более одной тысячной доли секунды. Хуже всего то, что после каждой сократительной вспышки анизо-элемент как-то истощается, или устает, или еще что-то с ним происходит, пока еще совершенно не объясненное физиологией, но только вслед за каждой молниеносной вспышкой анизо-элементу нужно двойное или тройное время сравнительно с продолжительностью самой вспышки, чтобы оправиться

от нее и возвратить себе дееспособность. В ближайшие мгновения, следующие за вспышкой возбуждения, анизо-элемент абсолютно не-возбудим ни для каких, хотя бы самых оглушительных, раздражений. Ничего подобного не наблюдалось с послушной и легко управляемой гладкой мышечной клеткой древнего образца.

Для того, чтобы преодолеть это неудобное свойство анизо-элементов, потребовался новый компромисс. Нервная система приладилась посылать в поперечнополосатую мышцу целые серии импульсов возбуждения, пулеметно мчащихся друг за другом (50—200 раз в секунду). Каждая вспышка сокращения анизоэлемента протекает все еще гораздо быстрее промежутка между двумя последовательными импульсами, но тут помогают прежде всего упругие изо-прокладки, замедляющие в несколько раз каждое сокращение, а затем и ряд других вспомогательных приспособлений. Слиянию пулеметной дроби сокращений анизо-элементов в плавные движения помогает и вязкость той студенистой полужидкости (так называемой саркоплазмы), которая наполняет «капоты» мышечных волоконец, и упругость, сухожилий и связок, и, наконец, инерция самих органов движения, играющих здесь роль махового колеса.

Описанные частые ряды возбуждений (так называемые тетанусы,— единственный способ длительно сокращать поперечнополосатое мышечное волокно или держать его сокращенным дольше пары сотых долей секунды. Можно было бы мысленно уподобить тетаническую серию возбуждений переменному электрическому току, вполне пригодному, несмотря на его прерывистость, и для приведения в действие электрических звонков, и для очень многих значительно более важных работ. То, что и в действительности напряженная скелетная мышца гудит, как «зуммер», применяемые в радиотелеграфии (это можно услышать, приложив ухо к напряженному бицепсу товарища или просто крепко сжав зубы, чтобы над самым ухом загудела собственная височная жевательная мышца), еще не могло бы являться серьезным недостатком в ее работе. Гораздо хуже то, что при каждой очередной вспышке сокращения поперечнополосатая мышца освобождает какую-то порцию своей химической энергии и эта энергия уже больше не может возвратиться обратно в мышцу, все равно, используется она для механической работы или нет.

Если мышца должна не поднимать кверху груз, а только держать его на весу на определенной высоте, то это возможно не иначе как только посредством тетануса, т. е. ценою сотни сократительных вспышек каждую секунду. Каждая вспышка освобождает ровно столько же энергии, сколько было бы нужно, чтобы с большой быстротой поднимать поддерживаемый груз кверху, а так как при держании механическая работа вовсе не потребляется, то, значит, вся освобождаемая мышцей огромная мощность уходит ни на что — превращается целиком в бесполезный нагрев.

Но и это еще не все. Анизо-элементы так же мало способны к регулировке силы, своих сокращений, как и к регулировке их длительности. Если раздражать поперечнополосатое мышечное волокно электрическим током, то нужно довести этот ток до какой-то определенной силы для того, чтобы волокно вообще могло б его почувствовать и отозваться на него: Но когда мы уже перешагнули этот порог, то дальше мы можем усиливать раздражающий ток до какой угодно величины, не выигрывая этим ни одного лишнего процента в силе ответного сокращения мышечного волокна: она все время будет оставаться той же самой. Этот закон действия поперечнополосатого волокна носит очень выразительное образное название: закон «все или ничего». Очень сходное с этим явление имеет место, например, при выстреле из винтовки. Для того, чтобы спусковой крючок соскочил, произведя выстрел, нужно потянуть его не меньше, чем с некоторой определенной силой; но дальше, если мы будем дергать его все сильнее и сильнее, мы все равно не добьемся этим никакого увеличения ни в силе, ни в дальности выстрела.

Таким образом, сила того короткого рывка, которым исчерпываются все возможности анизо-элемента и поперечнополосатого волокна, тоже не поддается регулировке, и необходим новый приспособительный компромисс, чтобы добиться в этом отношении какой-то управляемости. Каждое волоконце двигательного нерва врощено своими разветвлениями в пачку из 10-100 мышечных волокон, которые, очевидно, под действием его импульсов могут двигаться не иначе, как все разом и все одинаково. Такая пачка мышечных волокон носит название миона (Само волокно двигательного нерва вместе с начинающей его «пусковой» нервной клеткой в спинном мозгу называется мотоневрон; весь микроскопически малый агрегат в целом, мотоневрон + мион, обозначается нами как мотон). Каждая мышца нашего тела состоит в зависимости от своей величины из нескольких десятков или сотен мионов. Способ регулировать силу ее сокращения заключается в том, что в работу включается в разных случаях разный процент составляющих ее мионов. Именно этим путем, включая и выключая мион за мионом, нервная система и умудряется достигать той замечательной плавности и тонкости в изменениях мышечных усилий, которою мы любуемся в нежной и ловкой работе сестры, бинтующей мучительную рану, или в точных, верных движениях резчика. Надо, впрочем, сказать, что центральная нервная система выработала и другой,- более тонкий вспомогательный путь регулирования силы мышечных сокращений, о чем будет сказано ниже, в очерке V.

Таковы были те немалочисленные вспомогательные и поправочные приспособления, которыми обросла со всех сторон поперечнополосатая мышца, чтобы стало возможным реально использовать ее преимущества. Если вдуматься, то весь случай в целом выглядит до чрезвычайности нетипичным. Как обычное правило, отбор и весь естественный ход эволюции мало-помалу шлифуют и шлифуют вновь вырабатывающийся орган, пока он не окажется на своем месте с абсолютной точностью, как влитой. Подумаем, например, об изумительном устройстве обширной системы пищеварительных желез, о замечательной (изученной до тонкости нашим великим соотечественником И. П. Павловым) приспособленности их к перевариванию самой разнообразной пищи. Вспомним о необычайно тонком и полном остроумия аппарате, с помощью которого регулируется давление крови в сосудах: о так называемых синусах недавно открытых чувствительных приборчиках, помещающихся в аорте, близ сердца, ив сонных артериях и чутко откликающихся приспособительными рефлексами на каждое колебание сосудистого «барометра». На этом фоне грубая и крайне мало подходящая к физиологическим потребностям мышечная ткань, не подвергшаяся сама никакой переделке или перешлифовке, а только обросшая целым комом всяческих ухищрений и компромиссов, выглядит странным исключением. При мысли о ней приходит в голову сельскохозяйственник, выписавший себе для полевых работ молотилку и получивший вместо нее, по отсутствию таковых на складе, легковой автомобиль. Именно таким автомобилем (тут — с веревочным приводом, там — с приколоченным гвоздями домодельным сооружением из неструганного теса) и выглядит монтаж в нашем скелетно-двигательном аппарате поперечнополосатой мышцы.

Членистоногие в тупике

Я уже упомянул, что первые впечатления от сравнения между собой двигательных аппаратов членистоногих и позвоночных говорят как будто в пользу простоты и четкости, свойственных первым. Единственный явный плюс, бросающийся в глаза у позвоночных животных, — это гибкая подвижность их туловища; второе же преимущество, гораздо менее очевидное, заслуживает краткой характеристики. Это преимущество на первый взгляд похоже скорее на недостаток. Речь идет об обязательном активном участии мускулатуры в поддержании равновесия тела, т. е. в том, что в научной терминологии носит название статики тела. Так, например, грудное звено тела насекомого, к которому прикреплены все его шесть ножек, имеет собственную панцирную прочность, для поддержания которой никакой мышечной работы не требуется. Туловище человека, тоже связанное со всеми его конечностями и поддерживаемое двумя из них, держится прямо только благодаря непрерывному напряжению всех мышц, «расчаливающих» позвоночный столб, подобно тому, как ванты расчаливают корабельную мачту. Зато такая, как будто более трудная для управления, система обеспечивает телу человека (или вообще позвоночного) исключительную приспособляемость и маневренность.

Если какому-нибудь принципу вообще когда-либо удавалось решить задачу о сочетании всех преимуществ, свойственных мягкотелым, с жесткорычажным сооружением, пригодным для передачи больших усилий, то только принципу, положенному в основу строения позвоночных. Нет спора, что управление такою «жестко-нежесткою» системой труднее, но мы уже видели по другому поводу в предыдущем очерке, как часто более трудный инструмент, но зато обладающий большим числом степеней свободы, менее ограничивающий и сковывающий своего обладателя, ценится мастером выше всего. Облегчающие же подпорки, лады и подставки он заодно с трехколесным велосипедом без сожаления уступает сынишке.

Результат этих неброских биологических преимуществ принципа позвоночных не замедлил сказаться в последующей истории животного мира. Оба гигантских по своему объему класса — членистоногие и позвоночные — по праву поделили между собой первые места на нашей планете, но затем позвоночные оставили своих соперников далеко позади. Суть, конечно, не в том, что членистоногим никогда в последующем не удавалось достигать размеров тела, хоть сколько-нибудь сравнимых с размерами позвоночных (эти последние, напротив, в следующем периоде развития побили все рекорды величины тварей, когда-либо населявших Землю). Гораздо важнее то, что в отношении умственных способностей и теснейшим образом связанной с ними области движений членистоногие далеко и безнадежно отстали от позвоночных. Все рассказы о замечательном якобы уме насекомых, опирающиеся на захватанную; (и почти единственную на все сотни тысяч видов насекомых) пару примеров об общественной жизни пчел и муравьев, при более тщательной проверке их оказываются чистым недоразумением.

Своеобразный и сложный инстинкт, управляющий действиями этих насекомых и в своей природе еще совершенно не разгаданный, стоит вне сомнений, но между инстинктом и живою сообразительностью пропасть того же порядка, как и пропасть между жесткой головогрудью рака и шеей лебедя или, телом кошки. Те же насекомые, с геометрической точностью строящие стенки сотов под вечно равными друг другу углами или устраивающие коллективные «коровники» из травяных тлей при своих муравейниках, будучи поставлены в чуть-чуть непредвиденные условия, мгновенно теряются до полного расстройства координации. Если десяток муравьев как будто бы дружно волокут к муравейнику соломинку, то это изумляет и поражает, однако более тщательная проверка показывает, что при этом шестеро муравьев тянут в сторону гнезда, а остальные четыре — прочь от него, и соломинка влечется только по равнодействующей.

Переверните жесткокрылое насекомое на спинку, посадите муху без крыльев на конец травинки, преградите муравьям вершковою полоской воды их главную магистраль, ведущую к муравейнику, и т. п. Первою реакцией всех их будет величайшая, суетливая растерянность; второю — действия, в которых не знаешь, чего больше: смысловой ли бестолковости или двигательной неуклюжести. Мы уже говорили во вступительном очерке, что самый существенный признак для ловкости — находчивость, способность быстро и с честью выйти из любого непредвиденного положения. Но этого как раз и нет в поведении членистоногих. Они могут обладать исключительным проворством (муха, блоха, краб в воде, паучок-охотник и т. п.), недаром все-таки их тела оснащены поперечнополосатой мускулатурой, в придачу почти свободной от вязкой студени — саркоплазмы, но от проворства до ловкости еще очень далеко. Так, по крайней мере, скажет всякий, кому несущийся опрометью в пылу игры мальчишка угодит головой в живот. Предпочтя панцирный принцип принципу настроечной гибкости, природа членистоногих с абсолютной последовательностью пошла дальше по раз избранному пути. Эволюция выработала для насекомых сложные и точные инстинкты, такие же неизменяемые, как и их панцири; создала для их несложного обихода такие же формы поведения, однообразные, хорошо подогнанные и уже раз навсегда неизменяемые, точно рельсы, но зато и навсегда закрыла для них пути к личной индивидуальной приспособительности и к накоплению личного жизненного опыта. А этим шагом навсегда убила для них какие-либо перспективы умственного прогресса.

Эволюция позвоночных

Чтобы закончить этот очерк, нам остается сделать еще краткий обзор «новой» истории движений, истории, начавшейся после великого «поперечнополосатого переворота», который был обрисован на предыдущих страницах. Оставим членистоногих в том тупике, в который в конце концов завели их отрицательные черты строения двигательного аппарата, и сосредоточим теперь все внимание на позвоночных.

Важнейшая определяющая черта неокинетических животных (Неокинетический в переводе значит новодвигательный. Этот термин применяется для обозначения новых органов движения в их общей совокупности: поперечнополосатой мускулатуры, жестких суставчатых скелетов, взрывного бурного процесса возбуждения и т. д.) (как мы теперь будем называть обладателей поперечнополосатой мускулатуры) — центральная нервная система и головной мозг начали впервые с известной четкостью определяться уже у высших моллюсков (например, у головоногих — осьминога, каракатицы.) Однако только у позвоночных они нашли условия для бурного и безостановочного развития, продолжающегося и поныне. Это развитие, некоторые подробности которого будут освещены дальше, повело в конце концов к тому, что головной мозг, и в частности самая новая его, часть, так называемая кора больших полушарий, завладел у высших позвоночных верховной диктатурой по всем решительно физиологическим отправлениям. Это—новая, только в последние годы приоткрываемая страница науки о мозге; высокие заслуги в ее открытии принадлежат крупнейшему русскому физиологу К. М. Быкову. Год от года выявляется все больше и больше сторон жизнедеятельности, на которые головной мозг простирает свое верховное влияние: обмен веществ, управление физико-химическими процессами в крови, кроветворение, борьба с заразными началами и т. д., и т. д. Как бесконечно далеко это от тех невзрачных волоконец, едва начавших обособляться от окружающей ткани, по которым пробивал себе дорогу первобытный электрохимический возбудительный импульс!

Мы начнем и эту часть обзора таблицей — сводкой, указывающей последовательный порядок развития классов позвоночных. Для примерной оценки давности их возникновения на Земле снова воспользуемся примененным уже однажды уменьшительным масштабом времени 1 к 50 000 000, полезным для лучшей наглядности.
1   2   3   4   5   6   7   8   9   ...   23

Похожие:

Ее авторе и тех временах icon «Королева»   Сборник рассказов 
ОБ авторе   6 
Ее авторе и тех временах icon «Королева»   Сборник рассказов 
ОБ авторе   7 
Ее авторе и тех временах iconСведения ОБ авторе  Кременецкий областной гуманитарно

Ее авторе и тех временах icon"В гости к 12 месяцам"
Цель: уточнение знаний детей о временах года, изменениях природы в разное время года посредством использования икт
Ее авторе и тех временах icon         Русская история в жизнеописаниях ее главнейших деятелей. 
...
Ее авторе и тех временах iconН. М. Свирина доктор педагогических наук, профессор, зав кафедрой
Забота тех, кто занимается гимназическим образованием, в его сохранении и преумножении тех достижений, которые суще
Ее авторе и тех временах iconПрограмма Au-pair 
Габриель  Зейд,  «богатство  -  это  прежде  всего  накопление  возможностей».  Можно  много  го- ворить о временах, в которые мы выросли. Они были ...
Ее авторе и тех временах iconВ чем смысл названия произведения?
Вступление (общее впечатление, сведения об авторе, его общественно-политических взглядах)
Ее авторе и тех временах iconИз неутраченного
Об авторе. Г. Н. Пронина (1958) закончила Ижевский механический институт. Живёт в Ижевске. Работает в плановом отделе фгуп
Ее авторе и тех временах iconОмниа меа
Об авторе. Анатолий Илларионович Демьянов (1942) родился в Ижевске. Окончил Сарапульский техникум пищевой промышленности и
Разместите кнопку на своём сайте:
TopReferat


База данных защищена авторским правом ©topreferat.znate.ru 2012
обратиться к администрации
ТопРеферат
Главная страница